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Chaos-enhanced transport in cellular flows

By S.C.Jana axDp J. M. OrTINO

Department of Chemical Fyqineeing. Northwestern Universily,
Evanston, Illinois 60208, U.S.A.

Examples of chaos-enhanced transport in cellular flows are presented. Illustrations
span from boundary and jet-induced motions within cavities to separated flows;
chaotic advection is generated by time-modulation of walls, variation of angle of
impingement of laminar jets, and naturally occurring oscillations in the velocity field
as the Reynolds number is increased. Tools include manifold structure, the Melnikov
technique, as well as eulerian and lagrangian descriptions of transport. A range of
Péclet numbers is explored; the amount of transport enhancement over the non-
chaotic case is exemplified in terms of heating of a fluid and the removal of a diffusive
tracer; the enhancement over the non-chaotic case can be as large as 40 %.

THE ROYAL
SOCIETY 4

1. Introduction

Flow and transport in the vicinity of indentations, wedges and cavities, separated
flows near corners, bluff bodies and steps, are all-too-common in technology and
nature. Transport is hindered by wall-anchored streamlines, closed streamlines
(cells), or arrays of cells of ever diminishing strength, as in the celebrated Moffatt’s
flow (Moffatt 1964); we term such flows cellular flows. Little is known on how to
improve transport in such flows. Consider, for example, the case of wet cleaning of
wafers for microelectronic applications (Chilukuri & Middleman 1983, 1984 ; Tighe &
Middleman 1985). The aim is to remove residual contaminants contained in cavities
within the surface of the wafer by flushing the surface with a cleaning fluid ; however,
according to the aspect ratio of the cavities there might be closed cells. Typical
cavity sizes might range from thousands of microns for rough materials to tenths of
microns for polished wafers; the typical Reynolds numbers range from 1072 to 10%.
Timescales for diffusion —for a molecular diffusion coefficient of the order of
1075 em?* s — range from 107° to 10® s and, for Reynolds numbers in the range 10-10%,
the rate of removal is controlled by molecular diffusion, which is typically slow.
Thus, one question that suggests itself is the determination of flow conditions which
result in the elimination of stagnant fluid regions within cavities and lead to efficient
removal of the impurities. One possibility that comes to mind is to generate chaotic
advection to enhance transport but it is unclear whether or not chaos can actually
penetrate deep into the cavity. This is one of the questions addressed in this paper;
the goal is to present an array of possibilities to motivate further work and to
indicate the series of steps necessary for the analysis of related systems.

Several aspects of cellular flows, especially flows in cavities and wedges, have
received considerable attention in the literature (Moffatt 1964 ; Pan & Acrivos 1967 ;
Jeffrey & Sherwood 1980; Kiiblbeck et al. 1980; Chien et al. 1986; Chebbi &
Tavoularis 1990). By contrast studies focusing on transport enhancement by means of
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chaos in flows of practical interest are relatively recent and more scarce. The closest
related studies have been carried out primarily in the context of the Rayleigh-Bénard
(RB) flow (Solomon & Gollub 1988; Camassa & Wiggins 1990) and the Taylor-
Couette (TC) flow (Broomhead & Ryrie 1988), both flows leading to spatially
periodic arrays of cells. Experimental work in the RB flow has been carried out by
Solomon & Gollub (1988) and recent theoretical work has been conducted by
Jamassa & Wiggins (1990). These studies show that time-periodic flows cause chaotic
advection and improve inter-cell transport. Both the TC and the RB flows lead to
spatially periodic cell structures with equal strengths and transport enhancement is
predominantly in the direction parallel to the walls. By contrast the flows considered
here are spatially non-periodic, neighbouring cells have widely different strengths,
and the central issue is transport away from non-slip walls.

The analysis of chaotic advection starts with the analysis of the velocity field; in
turn, chaotic advection forms a template for the evolution of transport. The most
tractable cases correspond to Stokes and transitional two-dimensional flows and,
fortunately, many processes of practical interest, such as the cleaning problem
alluded to earlier, fall in this range. The simplest case to analyse corresponds to
analytically determined velocity fields (see, for example, Chaiken ef al. 1986;
Swanson & Ottino 1990). However, in most cases of practical interest analytical
solutions are not available and the problems must be solved numerically, for
example, using finite-difference or boundary integral methods. Finite-difference
techniques are, in principle, applicable for any Reynolds number and are particularly
effective in regular geometries. Boundary integral methods, on the other hand, are
well suited for Stokes flow problems involving complicated geometries.

Two prototypical flows are considered in some detail: closed cavity flows with
moving walls and jet-induced flow in a cavity; a third flow, an oscillatory flow in a
backward step is discussed only in qualitative terms. The paper is organized as
follows: §2 describes the flows of interest, §3 gives a brief review of dynamical
systems and topology of two-dimensional flows along with a discussion of possible
mechanisms for generation of chaotic advection; §4 presents a brief analysis of the
chaotic template (i.e. assuming that the tracers are purely passive); and §5 addresses
the effect of chaos on the transport of diffusive tracers. Finally, §6 presents a
discussion of the results and outlines a range of future problems and possibilities.

2. Flows of interest

The simplest class of flows we consider are closed-cavity Stokes flows generated by
means of two walls sliding parallel to themselves (figure 1). Both co-rotating and
counter-rotating wall motions lead to an array of elliptic points, the number of which
depends on the aspect ratio (w = width/height) and the instantaneous ratio of the
velocities of the walls (r = U, ,/U,). However, only co-rotating wall motions (i.e.
both walls move in opposite directions) lead to hyperbolic fixed points (Leong 1990).
Here we restrict our attention to cavities leading to two counter-rotating cells (both
walls move in the same direction); this situation leads to wall anchored dividing
streamlines. Velocity fields can be obtained analytically (Weiss-Florsheim 1965) as
well as numerically (Burggraf 1966; Pan & Acrivos 1967; Ryu et al. 1986). We use
the approximate analytical solution by Weiss & Florsheim (1965) as the topology of
the steady flows and the location of the elliptic and hyperbolic fixed points derived
from this solution agree reasonably well with experiments (Leong 1990 ; see figure 1).

Phil. Trans. R. Soc. Lond. A (1992)
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(b) ———T (c) (d) ——3m—

Figure 1. Steady streamline portraits for flow in a driven rectangular cavity. (a) Computation with
r = 1andw = 0.5. (b) Experiment with » = 1 and w = 0.5. (¢) Computation with » = 1 and w = 0.25.
(d) Experiment with r = 1 and w = 0.25. Both the top and bottom walls move from left to right.

The second type of flow —analysed by means of boundary integral technique
(Higdon 1985, 1990) — is produced by impinging a laminar jet at the fluid trapped
inside a rectangular cavity with depth H and aspect ratio w (figure 2). The free-
stream velocity field is given by u = axy+by?, v = (—3) ay®, with a jet angle a =
arctan (3a/2b). In this particular instance only part of the fluid from the cavity is
washed away by the jet and the remaining fluid forms recirculating regions; the area
of the recirculating region(s) and the number of cells depend on w and «. The third
example, considered only briefly here as an example of a flow that becomes time-
periodic as the Reynolds number is increased, is the flow down a backward step with
height A4 (figure 3). A ‘primary’ separation bubble is formed at the step, which grows
with increasing Reynolds number; at some critical Reynolds number the velocity
field becomes time-periodic (further information about locations, number and sizes
of bubbles, as well as the range of Reynolds numbers for which the flow is laminar,
transitional, or turbulent can be found in the work by Armaly et al. (1983)). The
height of the closed cavity, the depth of the open cavity, and the height of the
backward step are taken to be equal to unity.

The starting point in the analysis is the streamline portrait and it is convenient to
make a few comments in this regard. Typically, the determination of the streamline
portrait involves the contouring of the value of streamfunctions at grid points.
However, such technique might not be useful unless the flow is solved directly in
terms of the streamfunction. Another possibility is to plot the velocity vector at grid
points. In general, however, it is more convenient to integrate the velocity field,
dx/dt = v(x), for a number of strategically located initial conditions X. Highly
accurate interpolation routines, such as bicubic splines, must be used to ensure

Phil. Trans. R. Soc. Lond. A (1992)
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Figure 2. Steady streamline portraits for jet-induced flow in a rectangular cavity. (a) o = 75°
and w = 0.6. (b) & = 90° and w = 0.6.

Figure 3. Steady streamline portrait for flow down a backward step. The Reynolds number is 250
and the channel length is 20. A parabolic laminar profile at the inlet and Dirichlet boundary
condition at the outlet are used. The solution is obtained using the finite-difference code developed
by Kim & Moin (1985).

streamline closure in the recirculating regions. Such a problem might arise, for
example, in the flow down a backward step.

One important feature shared by all the flows considered here is dividing
streamlines connecting two no-slip walls (heteroclinic streamlines). Figure 1a, b show
the streamline portrait of a driven cavity flow with w = 0.5 and » = 1. In this case
there are only two primary cells separated by a dividing streamline attached to the
vertical walls. Figure 1¢, d show streamline portrait for the same flow corresponding
to a condition leading to four cells; the circulation in central cells is so weak - a factor
of 10* with respect to the cells near the moving walls — that almost no deformation
of a line of dye placed vertically across the cavity is observed in the timescale of the
experiment. Figure 2 shows the streamline portrait corresponding to the jet-induced
cavity flow for a = 75° and 90°. For a = 75° the cell structure is symmetric and
occupies about 30 % of the cavity. For o = 90° the topology of the flow is radically
different; however, the position of the separating streamline remains virtually
unchanged. Figure 3 shows the backward step flow corresponding to a Reynolds
number pU, . h/p = 250 (U, is the maximum velocity of the entering parabolic
profile, p and u are the density and viscosity of the fluid respectively). At this
Reynolds number the flow separates from the tip of the step and reattaches
downstream at 7.685%. All these flows can produce chaotic advection if the velocity
field is made time-periodic. Let us, however, review a few dynamical systems
concepts before venturing into chaotic advection and transport considerations (for a
more complete exposition the reader is referred to Ottino (1989)).

3. Ciritical and periodic points: flow manipulation

The equations of motion for a two-dimensional arca preserving velocity field can
be written as
w=da/dt = /oy, »=dy/dl = -0/, (n
Phil. Trans. R. Soc. Lond. A (1992)
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where i is the streamfunction. If the velocity field is steady, i.e. ¢ is independent of
time, the velocity field is integrable and the system cannot be chaotic. On the other
hand, if the velocity field, or equivalently ¥, is time-periodic there is a good chance
that the system will be chaotic (Aref 1984). A necessary condition for chaos is that
streamline portraits at two successive times show crossing of streamlines (recall that
the instantaneous streamline portraits need not have any critical hyperbolic points in
order for the flow to produce chaos).

The path of a fluid particle x = (x, y) initially located at x, = (z,,¥,) corresponds
to the solution of (1) with the initial condition x = x,. The solution of (1) for all x,s
belonging to the flow domain is called the flow or motion and is denoted as

x=®dy(x,) with x,=®,_,(x,) (2)

signifying that the fluid particle initially located at x, will be found at position x at
time ¢. In the case of time-periodic flows the flow can be reduced to a mapping. Given
a flow x = @,(x,), P is a fized point of the flow if

P=ao,P) (3)

for all time ¢ (i.e. the particle located at the position P stays at P); equivalently
v(P,t) = 0 for all ¢. Fixed or critical points corresponding to isochoric two-dimen-
sional flows can be hyperbolic or saddle type, elliptic, or parabolic; the character of
the fixed point can be obtained by linearizing the velocity field near P. A companion
concept is that of periodic points. At point P is periodic, of period »T, if

P=a,,(P) 4)

forn =1,2,3, ... but not for any t < n7 (fixed points are also periodic points but with
zero period). Here n defines the order of the periodic point and 7' is the period of the
flow. A common notation for @, ,(-) is f*(+). The character of the periodic point can
be obtained by linearizing the wwpping near P. Periodic points can be hyperbolic,
elliptic, or parabolic (see table 1). There is a subtle but important difference between
periodic points and critical points. A periodic point is a material point; a critical
point is not. Thus, if one were able to place a labelled fluid particle at any arbitrary
time on a periodic point the particle will faithfully record the motion of the periodic
point for all times. Such a thought experiment is not possible with a critical point and
in particular it is not possible with a critical point corresponding to a separating
streamline, which happens to be the primary point of interest in our case. In a non-
slip boundary, fluid particles adhere to the wall; nevertheless the flow can be
manipulated — for example by increasing the Reynolds number in the backward step
problem —in such a way that the location of the attaching point; i.e. the location
where vorticity changes sign can be changed at will. The same is true for flows
manipulated by means of boundary motions. As an example, figure 4 shows the
motion of point of separation (or reattachment) as a function of wall motions in the
wall-driven cavity flow (see also figure 1@, b). Chaos is unlikely unless separation and
attachment points do move; in this particular case the motion leads to the chaotic
structure shown in figure 5a.

The dynamics of low-order periodic points plays a profound role in producing
chaos. Elliptic points occur in the interior of islands that preclude mixing.
Hyperbolic points occur within the fluid whereas parabolic points originated by flow
separation occur at no-slip boundaries. Both types of points have associated

Phil. Trans. R. Soc. Lond. A (1992)
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08 1
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0

Figure 4. Location of the point of separation in a period in the driven cavity flow; » =1,
w = 0.5, and 7' = 20. The wave-form for the wall motion is given in equation 5.

(fz)

()

Figure 5. Poincaré sections for time-periodic flows. (a) Flow in a closed rectangular cavity. » = 1,

w = 0.5, and 7' = 20, (b) flow in open cavity. o, = 75°, a, = 90°, w = 0.5, T'= 50, a = 1000.

manifolds that constitute the primary avenues for transport. The local stable
(unstable) manifold is the set of all points which tend to the fixed point as ¢—
+ 00o(— 00). In our case the manifolds of interest are those associated with separation
and reattachment points. If the flow is steady, stable and unstable manifolds join
smoothly (as in figures 1-3) and transport is poor. To enhance transport the
manifolds have to intersect transversely; this can occur if the flow is made time-
periodic.

There are several ways to introduce a time-periodic perturbation. In the case of
flows with inertia, such as the backward step flow, this occurs naturally as the
Reynolds number is increased; related examples occur in Taylor-Couette flow
(Davey et al. 1968 ; Mullin et al. 1987), driven cavity flows (O’Brien 1975; Goodrich
& Soh 1989), and periodic vortex shedding behind a cylinder (Shariff et al. 1991).
Stokes flows, on the other hand, have to be manipulated from ‘outside’ and there is
no natural timescale. A common prescription is the time-periodic motion of the
boundaries. Time-periodic motion of only one wall is not sufficient to produce chaos
in a Stokes flow — the streamline portrait is invariant upon changes in direction and
magnitude in the motion of a wall —and consequently at least two walls must be

Phil. Trans. R. Soc. Lond. A (1992)
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moved (see Leong & Ottino 1989). The walls can be modulated in a number of ways,
but only square and sine square wave-forms, with walls moving in the same
direction, are used in this work. In the square wave, each wall is moved at a constant
speed for half of a period. In the sine square wave, the top and bottom walls are
moved according to:

utop - Utop

Sin? (/T +4m), ey = Upoesin® (nt/ 7). (5)
The advantage of the sine square wave over the square wave is that we can casily cast
the perturbed dynamical system into the standard form for the Melnikov analysis
presented in §4. To a large extent the results are independent of the details of the
motion and depend only on the period (Swanson 1991).

Jet-induced cavity flows can be made chaotic by varying the angle of impingement
in a time-periodic manner; the period is defined with respect to 1/aH (@ # 0). The
cellular structures formed at the bottom of the cavity for jet angles other than 90°
are nearly symmetric. However, for 90° there is a change in the topology of the flow.
Even though the jet does not penetrate completely into the cavity, it forces the fluid
to split into recirculating regions, which appear in pairs with a line of symmetry
around the y axis at half the width of the cavity (figure 2b). In this work we use jet
angles of 75° and 90° and apply them alternately: this preseription leads to
substantial streamline crossing. As we shall see however, the regions of chaos are
separated by a wall anchored Kolmogorov—-Arnold--Moser (KAM) surface - possibly
leaky — that prevents the material at the bottom from being effectively removed by
the flushing jet.

4. Underlying chaos

The effects of time-periodic perturbations on flows can be analysed using tools of
dynamical systems theory. The main techniques are Poincaré sections, manifold
structures, lobe dynamics, stretching plots, Melnikov method, ete. Table 2 gives a
summary of the general features of thcsc tools; only a few aspects of these techniques
are exploited here.

Poincaré sections are used to determine the main structures in the flow; i.c.
locations and extents of regular and chaotic regions. Figure 5a shows a typical
Poincaré section for the closed-cavity flow; KAM surfaces separate the remnants of
the regular regions from the chaotic regions (see figure 1a). Similarly figure 5b focuses
on the bottom part of a jet-induced cavity flow. The motion in the bottom region is
a factor of 107* weaker than the upper part of the flow and high period jets are needed
to generate substantial chaos. Particles above the separation streamline leave the
cavity under the action of the high-period jets.

It iy important to stress that even if Poincaré sections show the existence of
substantial communications between the different cellular regions, the rate of
transport might in fact be very poor (sce Khakhar el al. 1987, especially fig. 16).
Other tools are necessary to investigate transport rate; this is done by studying the
manifold structures of low-order periodic points, in particular the manifolds
associated with the soparating and attaching streamlines.

The analysis of these issues can proceed along the lines put forward by Wiggins
et al. (see, for example, Rom-Kedar & Wiggins 1990), and it goes by the name of
lobe dynamics. By determining the number and motion of lobes — the area trapped
between successive primary intersections of stable and unstable manifolds — it is
possible to compute the mass being transferred from one region to another per period

Phil. Trans. R. Soc. Lond. \ (1992)
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Figure 6. Manifold structures of closed cavity flow after 12 periods; r = 1, w = 0.5, and D = 20;
continuous line, stable manifold ; broken line, unstable manifold.

and hence the rate of transport (Camassa & Wiggins 1990). As important as these
concepts are from a conceptual viewpoint, they might be, however, of little use
in actual flows computed by numerical means. Computing manifolds is contingent
upon two factors; the velocity field itself and computer time. In systems of practical
interest the velocity field must be obtained numerically and the tracking of
manifolds depends on the numerical error in the velocity field itself and the
interpolation technique. Naturally the problem does not arise if an analytical
expression for the velocity field is available. Figure 6 shows the manifold structure
for the closed cavity flow.

The problem considered here, however, is amenable to such an analysis, and
moreover, for small perturbations from the integrable case, it can be examined by
means of the Melnikov technique (this technique is useful if an analytical expression
for the unperturbed homoclinic or heteroclinic orbit is available but is somewhat of
limited use in cases where the velocity field must be obtained numerically (see
Guckenheimer & Holmes 1983 ; Wiggins 1988). The perturbed dynamical system can
be written as

da/dt = fy(x, y) +eg, (@, y:1), (6a)

dy/dt = fy(x, y)+eg, (2, y:1), (6b)

where ¢ is the perturbation parameter, f, = 0y,/0y, f, = — 0y, /0x, g, = 0y, /dy, and
g, = — Oy, /0, with yry(x, y) and ¥, (x, y;t) as the streamfunction for the unperturbed
and perturbed flows respectively. In our case i, corresponds to the streamlines in
figure la, c.

The method gives the number of transverse intersections between the stable and
unstable manifolds per period as well as the lobe area, valuable information which
could otherwise be only gathered by examination of numerous specific computations.
For example, in the case corresponding to figure 1a and wall motions given by
equation (5), the Melnikov function has zeros at 7" and 7'; this means that the stable
and unstable manifolds have two transverse intersections per period. For 0.31 <
w < oo there is only one (central) heteroclinic orbit; for 0.162 < w < 0.31 two sets
are possible: one separating the two central cells, the others between the wall cells
and the central cells (sec figure 1¢). We focus on the central heteroclinic orbit. Let us
define the wall displacement per period as

D = (]dtopl + Idbotl)/wv (7)
Phil. Trans. R. Soc. Lond. A (1992)
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Figure 7. Effect of wall displacement and aspect ratio on lobe area from Melnikov analysis for
the driven cavity flow; » = 1.0.

Table 3. Eulerian and lagrangian descriptions of transport

eulerian lagrangian
governing equation 00/ot+u-Vo = V20 dx/dt = u(x,t)+L(¢)
typical cases heating of a fluid; dissolution dispersion of a blob of dye;
of a solute wall into a liquid dispersion of a hot spot
typical initial conditions 0(x,0) =0, 0(x,0) = 6,0(x—x,)
typical boundary conditions 0(082,t) =0, 00/0n = 0 on 02
T T
with Aiop = ‘[ Urop(t) dt;  dy = f Uy (£) dE. (8)
0 0

Figure 7 shows the lobe area (1) as a function of D for various aspects ratios w. In
all cases the lobe area corresponds to the central heteroclinic orbits. For cach w the
lobe area increases gradually with D and reaches an asymptotic value, at which case
only one lobe is possible between the parabolic points. Most of the improvement
occurs for 5 < D < 10. Also for a given D the lobe area increases with aspect ratio and
cavities with aspect ratio less than 0.3 are difficult to clean (the lobe area is negligibly
small; incidentally, so is the lobe area between the heteroclinic orbits separating the
central cells and the wall cells).

The question now is how this underlying chaos affects the transport of diffusing
scalars in the flow. Obviously, the extent to which the transport is affected will
depend on the ratio between the rate and extent of chaotic advection and speed of
molecular diffusion. As we shall show even relatively confined regions of chaos
improve transport considerably.

5. Diffusing scalars in chaotic flows

As an example consider the heating of a fluid in a square closed cavity using squarc
wave-form for the wall motions; such a problem is well suited for an culerian
description of transport (see table 3). The energy balance equation is given by:

00/t +u-VO = (1/Pe) V30, 9)
where 0 is the dimensionless temperature and Pe is the Péclet number, UL/k, where
U is a characteristic velocity, L is a characteristic length, and « is the thermal

Phil. Trans. R. Soc. Lond. A (1992)
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Figure 8. Effect of chaotic flows on diffusing tracers. Heating of a newtonian fluid in a closed
cavity. w = 1.0, D = 0.1 and r = 1.0. A square wave-form is used for wall motions.

diffusivity of the fluid. Initially the fluid is at 0, and at ¢ > 0, a constant temperature
of 0, is maintained at the surrounding walls. Because of the regular geometry of the
cavity and compatible initial and boundary conditions we solve the problem using a
finite-difference technique. To quantify the effect of chaotic advection it is convenient
to define two additional parameters. The total wall displacement, Ny, is defined as the
product of D and the total number of periods (P); i.e. Ny = DP. The enhancement
factor 9, is defined as the ratio of the average temperature of the fluid using the
chaotic flow to that produced by the application of the regular flow for the same
value of Ny (N, is a measure of the cost incurred in moving the walls). Figure 8 shows
the variation of 5 as function of N, for different values of Pe. It is apparent that there
is an interplay between thermal diffusion and chaotic advection and that substantial
improvements are possible (it should be noted that the amount of chaos in this flow
is mostly confined to narrow bands near the heteroclinic orbit). At low Péclet
numbers the thermal diffusion dominates and chaos plays almost no role. At large
Péclet numbers a thin thermal boundary layer is formed at the walls; however, this
is precisely the region where the flow is typically less chaotic and the effect of chaotic
advection is reduced to shuffling portions of materials in the centre region where the
temperature is already uniform. The best results are obtained at intermediate Péclet
numbers; the temperature gradient is spread over a wider region and the shuffling
action of the chaotic advection, taking parcels of hot fluid from the wall region and
replacing it by cold centre-region fluid, enhances the rate of heating considerably.

The second example, discussed only cursorily, corresponds to the case of dispersion
of a mass of a diffusing tracer initially trapped in an open cavity with w = 0.6. The
goal is to measure the fraction of the initial mass removed by the flow. These types
of problems are ideally suited for a lagrangian description of transport. The starting
point is the advection equation

dx/dt = u(x,t)+{(t), (10)
where {(t), which mimics molecular diffusion, has the properties

<§7,> =0, <§z(t) gj(t0)> = 21)mol 82’]’ 5(t—t0) (11)

Phil. Trans. R. Soc. Lond. A (1992)
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(the pointed brackets (-)> denote an ensemble average, the subscripts 7 and j
represent ¢th and jth components respectively, and D, is the molecular diffusion
coefficient). A related study by Shariff et al. (1992) for the time-periodic shedding of
vortices behind a circular cylinder studied the effect of chaotic advection without
considering molecular diffusion.

The initial condition is represented in terms of a collection of particles. The fact
that no particles can penetrate the solid walls defines the boundary conditions. The
displacements of particles by molecular diffusion is mimicked by generating random
numbers with zero mean and standard deviation in the ¢th direction given by z7 =
2D, 7, where 7 is the time between two consecutive kicks, called the ‘kick time’.
The variance z; has the dimension of length and is a measure of an average
displacement in one kick. A value is assigned to z, and 7 is determined from the
relation given above. Each particle is advected for a time 7 using the flow followed
by the brownian displacement to a new location. This is repeated for the entire period
of the flow and at the end the fraction of particles removed from the prescribed
domain is calculated.

Typical results indicate that the particles are removed in two stages. Most of the
particles above the dividing KAM surface are removed within a few periods; the rest
is removed by a combination of molecular diffusion and leakage through holes in the
perforated KAM surface (so called cantorus, Khakhar et al. 1986). The circulation
in the cells near the bottom of the cavity is a factor of 107? less than that of the top
part. For this reason, it is advisable to apply the jets in two stages: first, with a low
period to remove particles in the upper portion of the cavity, then for a higher period
to remove the particles confined to the bottom cell. High-period jets serve two aims;
they produce perforations in the KAM surface and induce widespread chaos in the
bottom of the cavity. Within a given region advection and diffusion act in parallel;
the escape of particles from chaotic regions is controlled by advection through holes;
the removal of the particles confined to regions of regularity is governed by molecular
diffusion.

6. Outlook

We have introduced the concept of transport enhancement in cellular ows by
means of prototypical flows and indicated a few possibilities for further inv-
estigations. Analyses have been restricted to time-periodic forcing but generalization
to quasiperiodic modulations scems straightforward (Beige et al. 1991). Such an
extension might have far reaching implications; in particular it might allow
connecting near wall Stokes flows with outside forcing turbulent flows. Experiments
are undoubtedly necessary but already developed theory provides useful guidance;
closed cavities with w < 0.3 are inefficient in transporting material between opposing
moving walls because of very weak motions in the interior cells and dividing KAM
surfaces; similar reasons preclude open cavities with w < 0.7 to be completely
cleaned by means of laminar jets. The flows considered are relevant in the context
of transport processes involving solid or porous surfaces; various enginecering
applications may not be far behind (see Howes et al. 1991). Jet induced cavity flows
and backward step flows might be useful in the analysis of cleaning of surfaces,
growth and deposition processes near walls, cte. Wall driven cavity flows can be
regarded as small pores connecting two separate flows and thus they might be useful
in highlighting the role of flows in enhancement of transport in the neighbourhood
of porous walls.

Phil. Trans. R. Soc. Lond. A (1992)
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Future developments can proceed in several directions. One possibility is to focus
on heterogeneous fluids which contain suspended material that can aggregate or
agglomerate leading to the formation of fractal-like clusters (Danielson ef al. 1991).
One such example is solids formation and growth processes in thermally stressed
fluids. Such a situation is important in understanding the fundamentals of fouling
processes (fouling related problems, plant shut-down, power requirements to
compensate for oversizing, etc., account for 0.3 % of the gross national product of the
U.S.A. and U.K. (J. M. McMichael, personal communication). Studies might then
focus on ways to improve the rate of transport while at the same time to minimize
the rate of aggregation. This is essentially an optimization problem ; chaos accelerates
the rate of aggregation but on the other hand material spends less time in the
recirculating regions. Finally, other mechanisms for transport enhancement should
be explored as well. The heating example in §5 shows clearly that even small amounts
of chaos enhance transport considerably but that chaos does not easily reach to the
bottom deep of the cavity (figure 5b). Inertia may improve transport in deep cavities
and this point should be explored more fully; temperature gradients might help as
well. In some instances, such as cleaning, the temperature gradients might be
induced by means of exothermic chemical reactions. A knowledge of transport
enhancement might allow engineers to look at old processes with new eyes and
suggest avenues for process optimization and invention.

We extend our appreciation to C.-W. Leong for providing figure 15, d and to P. Moin for allowing
us to use the finite-difference code for the flow down a backward step. This work was supported by
a grant from the AFOSR.

References

Aref, H. 1984 Stirring by chaotic advection. J. Fluid Mech. 143, 1-21.

Armaly, B. F., Durst, F., Pereira, J. C. F. & Schonung, B. 1983 Experimental and theoretical
investigation of backward-facing step flow. J. Fluid Mech. 127, 473-496.

Beige, D., Leonard, A. & Wiggins, S. 1991 Chaotic transport in the homoclinic and heteroclinic
tangle regions of quasiperiodically forced two-dimensional dynamical systems. Nonlinearity 4,
775-819.

Broomhead, D. 8. & Ryrie, S. C. 1988 Particle paths in wavy vortices. Nonlinearity 1, 409-434.

Burggraf, O. R. 1966 Analytical and numerical studies of the structure of steady separated flows.
J. Fluid Mech. 24, 113-151.

Camassa, R. & Wiggins, S. 1990 Chaotic advection in a Rayleigh-Bénard flow. Phys. Rev. A43,
774-797.

Chaiken, J., Chevray, R., Tabor, M. & Tan, Q.M. 1986 Experimental study of lagrangian
turbulence in a Stokes flow. Proc. R. Soc. Lond. A408, 165-174.

Chebbi, B. & Tavoularis, S. 1990 Low Reynolds number flow in and above asymmetric, triangular
cavities. Phys. Fluids A2, 1044-1046.

Chien, W. L., Rising, H. & Ottino, J. M. 1986 Laminar mixing and chaotic mixing in several cavity
flows. J. Fluid Mech. 170, 355-377.

Chilukuri, R. & Middleman, S. 1983 Circulation, diffusion, and reaction within a liquid trapped in
a cavity. Chem. Engng Commun. 22, 127-138.

Chilukuri, R. & Middleman, S. 1984 Cleaning of a rough rigid surface: removal of a dissolved
contaminant by convection-enhanced diffusion and chemical reaction. J. electrochem. Soc. 131,
1169-1173.

Danielson, T.J., Muzzio, F.J. & Ottino, J. M. 1991 Aggregation and structure formation in
chaotic and regular flows. Phys. Rev. Lett. 66, 3128-3131.

Davey, A., DiPrima, R. C. & Stuart, J. T. 1968 On the instability of the Taylor vortices. J. Fluid
Mech. 31, 17-52.

Phil. Trans. R. Soc. Lond. A (1992)

20 Vol. 338. A


http://rsta.royalsocietypublishing.org/

\

A

4

/

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

A
A

A

/

Vi

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

532 S. C. Jana and J. M. Ottino

Goodrich, J. & Soh, W. Y. 1989 Time-dependent viscous incompressible Navier—Stokes equations:
the finite difference Galerkin formulation and streamfunction algorithms. J. Comput. Phys. 84,
207-241.

Guckenheimer, J. & Holmes, P. 1983 Nonlinear oscillations, dynamical systems, and bifurcations of
vector field. New York: Springer-Verlag.

Higdon, J.J. L. 1985 Stokes flow in arbitrary two-dimensional domains: shear flow over ridges
and cavities. J. Fluid Mech. 159, 195-226.

Higdon, J. J. L. 1990 Effect of pressure gradients on Stokes flows over cavities. Phys. Fluids A2,
112-114.

Howes, T., Mackley, M. R. & Roberts, E. P. L. 1991 The simulation of chaotic mixing and
dispersion for periodic flows in baffled channels. Chem. Engng Sci. 46, 1669-1677.

Jeffrey, D.J. & Sherwood, J. D. 1980 Streamline patterns and eddies in low-Reynolds-number
flow. J. Fluid Mech. 96, 315-334.

Khakhar, D. V., Rising, H. & Ottino, J. M. 1986 Analysis of chaotic mixing in two model flows.
J. Fluid Mech. 172, 419-451.

Kim, J. & Moin, P. 1985 Application of fractional step method to incompressible Navier-Stokes
equations. J. Comput. Phys. 59, 308-323.

Kiiblebeck, K., Merker, G. P. & Straub, J. 1980 Advanced numerical computation of two-
dimensional time-dependent free convection in cavities. Int. J. Heat Mass Transfer 23, 203-217.

Leong, C.-W. 1990 Chaotic mixing of viscous fluids in time-periodic cavity flows. Ph.D.
dissertation, University of Massachusetts, U.S.A.

Leong, C.-W. & Ottino, J. M. 1989 Experiments on mixing due to chaotic advection in a cavity.
J. Fluid Mech. 209, 463-499.

Moffatt, H. K. 1964 Viscous and resistive eddies near a sharp corner. J. Fluid Mech. 18, 1-18.

Mullin, T\, Cliffe, K. A. & Pfister, G. 1987 Unusual time-dependent phenomena in Taylor-Couette
flow at moderately low Reynolds number. Phys. Rev. Lett. 58, 2212-2215.

O’Brien, V. 1975 Unsteady separation phenomena in a two-dimensional cavity. AI4A4 J. 13,
415-416.

Ottino, J. M. 1989 The kinematics of mixing : stretching, chaos, and transport. Cambridge University
Press.

Pan, F. & Acrivos, A. 1967 Steady flows in rectangular cavities. J. Fluid Mech. 28, 643-655.

Rom-Kedar, V. & Wiggins, S. 1990 Transport in two-dimensional maps. Arch. ration. Mech.
Analysis 109, 239-298.

Ryu, H. W, Chang, H. N. & Lee, D. I. 1986 Creeping flows in rectangular cavities with translating
top and bottom walls: numerical study and flow visualization. Korean J. chem. Engng 3,
177-185.

Shariff, K., Pulliam, T. H. & Ottino, J. M. 1992 A dynamical systems analysis of kinematics in the
time-periodic wake of a circular cylinder. In Vortex dynamics and vortex methods (ed. C. Anderson
& C. Greengard), Proc. AMS-SIAM Conf., Lectures in Applied Mathematics. Providence:
American Mathematical Society. (In the press.)

Solomon, T. H. & Gollub, J. P. 1988 Chaotic particle transport in time-dependent Rayleigh—
Bénard convection. Phys. Rev. A38, 6280-6286.

Swanson, P. D. 1991 Regular and chaotic mixing of viscous fluids in eccentric rotating cylinders.
Ph.D. dissertation, University of Massachusetts, U.S.A.

Swanson, P. D. & Ottino, J. M. 1990 A comparative computational and experimental study of
chaotic mixing of viscous fluids. J. Fluid Mech. 213, 227-249.

Tighe, S. & Middleman, S. 1985 An experimental study of convection-aided removal of a
contaminant from a cavity in a surface. Chem. Engng Commun. 33, 149-157.

Weiss, R. F. & Florsheim, B. H. 1965 Flow in a cavity at low Reynolds number. Phys. Fluids 8,
1631-1635.

Wiggins, S. 1988 Global bifurcations and chaos. New York: Springer-Verlag.

Phil. Trans. R. Soc. Lond. A (1992)


http://rsta.royalsocietypublishing.org/

THE ROYAL A

PHILOSOPHICAL
TRANSACTIONS

THE ROYAL A

PHILOSOPHICAL
TRANSACTIONS

A
L A

SOCIETY LN\

OF

Y o

SOCIETY LA

eI

‘igure 1. Steady streamline portraits for flow in a driven rectangular cavity. (¢) Computation with
= | and w = 0.5. (b) Experiment with » = 1 and w = 0.5. (¢) Computation with » = 1 and w = 0.25.
d) Experiment with » = 1 and w = 0.25. Both the top and bottom walls move from left to right.
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